CO2 sensing at ocean surface mediated by cAMP in a marine diatom.

نویسندگان

  • Hisashi Harada
  • Kensuke Nakajima
  • Kunihiro Sakaue
  • Yusuke Matsuda
چکیده

Marine diatoms are known to be responsible for about a quarter of global primary production and their photosynthesis is sustained by inorganic carbon-concentrating mechanisms and/or C(4) metabolism. Activities of the inorganic carbon-concentrating mechanism are attenuated under enriched [CO(2)]; however, impacts of this factor on primary productivity and the molecular mechanisms of CO(2) responses in marine diatoms are unknown. In this study, transgenic cells were generated of the marine diatom Phaeodactylum tricornutum by the introduction of a beta-glucuronidase reporter gene under the control of an intrinsic CO(2)-responsive promoter, which is the sequence between -80 to +61 relative to the transcription start site of a chloroplastic-carbonic anhydrase gene, ptca1, obtained from P. tricornutum. The activity of the ptca1 promoter was effectively repressed in air-level CO(2) by treating cells with a 1.0 mm cAMP analog, dibutyryl cAMP, or a cAMP phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine. Deletion of the intrinsic cAMP-response element from the ptca1 promoter caused a lack of repression of the reporter gene uidA, even under elevated [CO(2)] and a null phenotype to the strong repressive effects of dibutyryl cAMP and 3-isobutyl-1-methylxanthine on the ptca1 promoter. Deletion of the cAMP-response element was also shown to cause derepression of the uidA reporter gene in the dark. These results indicate that the cytosolic cAMP level increases under elevated [CO(2)] and represses the ptca1 promoter. This strongly suggests the participation of cAMP metabolism, presumably at the cytosolic level, in controlling CO(2)-acquisition systems under elevated [CO(2)] at the ocean surface in a marine diatom.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean.

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensin...

متن کامل

CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum

CO2/pH perturbation experiments were carried out under two different pCO2 levels (39.3 and 101.3 Pa) to evaluate effects of CO2-induced ocean acidification on the marine diatom Phaeodactylum tricornutum. After acclimation (>20 generations) to ambient and elevated CO2 conditions (with corresponding pH values of 8.15 and 7.80, respectively), growth and photosynthetic carbon fixation rates of high...

متن کامل

Responses of marine benthic microalgae to elevated CO2

Increasing anthropogenic CO2 emissions to the atmosphere are causing a rise in pCO2 concentrations in the ocean surface and lowering pH. To predict the effects of these changes, we need to improve our understanding of the responses of marine primary producers since these drive biogeochemical cycles and profoundly affect the structure and function of benthic habitats. The effects of increasing C...

متن کامل

Biological responses of the marine diatom Chaetoceros socialis to changing environmental conditions: A laboratory experiment

Diatoms constitute a major group of phytoplankton, accounting for ~20% of the world's primary production. It has been shown that iron (Fe) can be the limiting factor for phytoplankton growth, in particular, in the HNLC (High Nutrient Low Chlorophyll) regions. Iron plays thus an essential role in governing the marine primary productivity and the efficiency of biological carbon pump. Oceanic syst...

متن کامل

Light and CO2/cAMP Signal Cross Talk on the Promoter Elements of Chloroplastic β-Carbonic Anhydrase Genes in the Marine Diatom Phaeodactylum tricornutum.

Our previous study showed that three CO2/cAMP-responsive elements (CCRE) CCRE1, CCRE2, and CCRE3 in the promoter of the chloroplastic β-carbonic anhydrase 1 gene in the marine diatom Phaeodactylum tricornutum (Pptca1) were critical for the cAMP-mediated transcriptional response to ambient CO2 concentration. Pptca1 was activated under CO2 limitation, but the absence of light partially disabled t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 142 3  شماره 

صفحات  -

تاریخ انتشار 2006